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Abstract— This paper presents an outline the derivation of conservation equations applicable to a nanofluid in the absence of a solid 

matrix. The modified equations to the case of a porous medium saturated by the nanofluid in presence of heat source. In this paper, we 

have employed a Darcy model for the momentum equation. We do not anticipate that the inclusion of a Brinkman term in that equation 

will have a major qualitative effect. 
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I. INTRODUCTION 

Nanotechnology provides new area of research to process and produce materials with average crystallite sizes below 100nm called 

nanomaterials. The term “nanomaterials” encompasses a  wide  range  of  materials  including  nanocrystalline  materials, nanocomposites,  

carbon nanotubes  and  quantum  dots. The term “nanofluid” refers to a liquid containing a dispersion of submicronic solid particles 

(nanoparticles). The term was coined by choi[1]. The characteristic feature of nanofluid is thermal conductivity enhancement, a phenomenon 

observed by masuda et al [2]. This phenomenon suggests the possibility of using nanofluid in advanced nuclear systems [3]. Another recent 

application of nanofluid flow is nano-drug delivery [4]. 

A comprehensive survey of convective transport in nanofluids was made by Buongiorno [5], who says that a satisfactory explanation for 

the abnormal increase of the thermal conductivity and viscosity is yet to be found. He focused on the further heat transfer enhancement 

observed in convective situations. Buongiorno notes that several authors have suggested that convective heat transfer enhancement could be 

due to the dispersion of the suspended nanoparticles but she argues that this effect is too small to explain the observed enhancement. 

Buongiorno also concludes that turbulence is not affected by the presence of the nanoparticles so this cannot explain the observed 

enhancement. Particle rotation has also been proposed as a cause of heat transfer enhancement, but Buongiorno calculates that this effect is 

too small to explain the effect. With dispersion, turbulence and particle rotation ruled out as significant agencies for heat transfer 

enhancement, Buongiorno proposed a new model based on the mechanics of the nanoparticle/ base-fluid relative velocity. 

Buongiorno [5] noted that the nanoparticle absolute velocity can be viewed as the sum of the base-fluid velocity and a relative velocity 

(that he calls the slip velocity). He considered in turn seven slip mechanisms: inertia, Brownian diffusion, thermophoresis, diffusiophoresis, 

Magnus effect, fluid drainage and gravity settling. He concluded that in the absence of turbulent effects it is the Brownian diffusion and the 

thermophoresis that will be important. Buongiorno proceeded to write down conservation equations based on these two effects. 

The Bénard problem (the onset of convection in a horizontal layer uniformly heated from below) for a nanofluid was studied by Tzou [6], 

[7] on the basis of the transport equations of Buongiorno [5]. In the present project the corresponding problem for flow in a porous medium 

(the Horton–Rogers–Lapwood problem) is studied. We will assume that nanoparticles are suspended in the nanofluid using either surfactant 

or surface charge technology. This prevents particles from agglomeration and deposition on the porous matrix. 

For completeness, we mention that a substantially different treatment of the Bénard problem for a nanofluid has been given by Kim et al 

[8]–[10]. These authors simply modified three quantities that appear in the definition of the Rayleigh number namely the thermal expansion 

coefficient, the thermal diffusivity and the kinematic viscosity. 

We are not aware of any publications on convection of nanofluids in porous media as such. (We are aware of the paper by Tsai and Chein  

[11] who modelled a microchannel heat sink, with a nanofluid, as a porous medium.) There have been studies done on convection in porous 

media with thermophoresis particle deposition (e.g.,[12]) but an essential feature of nanofluids is that with a special treatment particle 

deposition can be made negligible. 

Likewise it appears that studies involving Brownian motion and porous media are confined to deposition phenomena and so are irrelevant 

to the present investigation. In the present work, we have extended the work of Nield and Kuznetsov[13]. 

The organization of the paper is as fallows. Brief introduction to the nanoparicles , nonofulid applications are discussed in the section I. 

Pertubation soluation for nonofluid flow is given in the section II.Results and discussion is given in the section III. Finally the conclusion is 

given in the section IV. 

 

II. CONSTRICTING THE PROBLEM 

Consider the superimpose perturbations on the basic solution is given by equation .1 

 
The following equations are obtained by number of modification                                          

0' V                                                                                                                                                           (2) 


 zz eRneRaTVp ''''0 
                                                                                                         (3)                                                                                    

)'(
'2

)
''

(''
' 2 TT

z

T

Le

NN

zz

T

Le

N
Tw

t

T
b

BAB 






















                                                             (4)                                    

)1........('.........,',','   bbb TTTpppVV

http://www.jetir.org/


© 2018 JETIR April 2018, Volume 5, Issue 4                                                              www.jetir.org  (ISSN-2349-5162)  

 

JETIR1804187 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 936 

 

''
1

'
1'1 22 T

Le

N

Le
w

t

A 









                                                                                                                         (5) 

               
,0'w ,0'T ,0'

 at 
,0z

and at .1z                                                                                               (6)                                                             

It will be noted that the parameter Rm  is not involved in these and subsequent equations. It is just a measure of the basic static pressure 

gradient. 

      For the case of a regular fluid (not a nanofluid) the parameters 
,Rn AN

 and BN
 are zero, the second term in Eq. (5) is absent be-

cause 
0/  z

and then Eq. (5) is satisfied trivially. The remaining equations are reduced to the familiar equations for the Horton–Roger–

Lapwood problem. 

      The six unknowns 
',',',',',' Tpwvu
can be reduced to three by operating on Eq. (3) with 

curlcurlez 


 and using the identity 
2 graddivcurlcurl

 together with Eq. (2). 

The result is 
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Here 
2

H
  is the two-dimensional Laplacian operator on the horizontal plane. 

       

The differential Equations and the boundary conditions constitute a linear boundary-value problem that can be solved using the method of 

normal modes. 

We write 
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and substitute into the differential equations to obtain 
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Thus 


 is a dimensionless horizontal wave number. 

      For neutral stability the real part of s  is zero. Hence we now write 
,is 

, where   is real and is a dimensionless frequency. 

        We now employ a Galerkin-type weighted residuals method to obtain an approximate solution to the system of Eqs. (9)-(12). We 

choose as trial functions (satisfying the boundary conditions) 

.........3,2,1;sin  pzpW ppp  



N

p

pp

N

p

pp

N

p

pp CBWAW
111

,,

                              (14) 

                                                                              

substitute into Eqs. (9)-(12), and make the expressions on the left-hand sides of those equations (the residuals) orthogonal to the trial 

functions, thereby obtaining a system of N3  linear algebraic equations in the N3  unknowns 
NpCBA ppp ......2,1;,, 

. The vanishing of 

the determinant of coefficients produces the eigenvalue equation for the system. One can regard Ra as the eigenvalue. Thus Ra is found in 

terms of the other parameters. 

 

III. RESULTS AND DISCUSSIONS 

A sketch of 
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 versus Ra  is given in  Fig. 1. The sketch is made on the assumption that 
   /LeNA   is greater than 

unity. If that inequality is reversed than the labels on the axes need to be swapped around. The stability diagram is qualitatively similar to 

Fig. 9.2 in  [14] which pertains to the double-diffusive Horton–Rogers–Lapwood problem. 

where  
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There appears to be a qualitative discrepancy between our results and Fig. 4(b) in Tzou  [6],[7]. This figure indicates that the analysis in 

Tzou  [6],[7] leads to the prediction that the critical Rayleigh number is reduced by a substantial amount in the bottom-heavy case, whereas 

our analysis leads to a predicted increase in the value of the critical Rayleigh number for non-oscillatory instability in this case. Tzou offers 

no physical explanation for the substantial reduction. Tzou  [6],[7] uses the symbol Le to denote a Lewis number divided by the nanoparticle 

fraction decrement rather than a regular Lewis number. This means that his parameter Le tends to infinity as the nanoparticle fraction 

decrement tends to zero, i.e. in the limit as the nanofluid is replaced by a regular fluid. Accordingly, we hypothesize that it is possible that 

the solution obtained by Tzou  [6],[7]. 

 

 
Fig. 1. Sketch of the stability and instability domains. 

 

IV. CONCLUSION 

In this paper, we have employed a Darcy model for the momentum equation. We do not anticipate that the inclusion of a Brinkman term in 

that equation will have a major qualitative effect. Rather, the expected result would be that the value 40 is replaced by a larger value 0Ra  

that depends on the hydrodynamic boundary conditions and increases with increase of the Darcy number. A consequence of the increase in 

0Ra  is that the change in the value of Ra , for a given value of Rn , decreases as a percentage of the value of 0Ra . Thus, for example, a 

change from free–free boundary conditions to the more restrictive rigid–rigid boundary conditions, something that increases the value of 

0Ra , leads to a decrease in the sensitivity of Ra  to a given change in Rn . 
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